(x-7)2+x^2=(x+1)2

Simple and best practice solution for (x-7)2+x^2=(x+1)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-7)2+x^2=(x+1)2 equation:



(x-7)2+x^2=(x+1)2
We move all terms to the left:
(x-7)2+x^2-((x+1)2)=0
We multiply parentheses
x^2+2x-((x+1)2)-14=0
We calculate terms in parentheses: -((x+1)2), so:
(x+1)2
We multiply parentheses
2x+2
Back to the equation:
-(2x+2)
We get rid of parentheses
x^2+2x-2x-2-14=0
We add all the numbers together, and all the variables
x^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 3^(x)=300 | | 5y-12=10+3y | | 3^(2x)=300 | | x/4-x+3/3=1/2 | | 19=7+2g | | 8r-19=45 | | 8r-19=42 | | 4-9x=2.89037 | | Y=-x²+6x-8 | | 5d–6=9 | | E^(4-9x)=18 | | 3x-13=1-2x | | 7x+24-2x=41-x-5 | | -4x2-12x+18=0 | | 4x16+2=7/3 | | 2x^2-7x=-14 | | 21y+7=-3 | | 7x+7=-3 | | 9-2x=4x+9 | | -2x-4=3+2x | | 4y×4=16 | | 7x-4÷3x=2 | | 4x^2+72x-324=0 | | -2=3x+2÷2 | | 31/4=1/2+w* | | 2.5t=10* | | y+1.8=14.7* | | -5v+7=2 | | 2x=5* | | 100d=13.71* | | 5-6y.y=3 | | −(x−2)=x−5−3x |

Equations solver categories